This paper studies a fundamental mechanism of how to detect a conflict between arguments given sentiments regarding acceptability of the arguments. We introduce a concept of the inverse problem of the abstract argumentation to tackle the problem. Given noisy sets of acceptable arguments, it aims to find attack relations explaining the sets well in terms of acceptability semantics. It is the inverse of the direct problem corresponding to the traditional problem of the abstract argumentation that focuses on finding sets of acceptable arguments in terms of the semantics given an attack relation between the arguments. We give a probabilistic model handling both of the problems in a way that is faithful to the acceptability semantics. From a theoretical point of view, we show that a solution to both the direct and inverse problems is a special case of the probabilistic inference on the model. We discuss that the model provides a natural extension of the semantics to cope with uncertain attack relations distributed probabilistically. From en empirical point of view, we argue that it reasonably predicts individuals sentiments regarding acceptability of arguments. This paper contributes to lay the foundation for making acceptability semantics data-driven and to provide a way to tackle the knowledge acquisition bottleneck.


翻译:本文研究如何发现关于论据可接受性的各种观点之间冲突的基本机制。我们引入了抽象论辩反反论问题的概念。鉴于这一系列令人接受的论点,本文件旨在找到攻击关系,用可接受的语义来很好地解释这些组合。这是与抽象论辩传统问题相对应的直接问题的反向,它侧重于从这些论点之间攻击性关系的语义中找到一系列可接受的论点。我们给出了一个概率模型,以忠实于可接受语义的方式处理这两个问题。从理论角度看,我们表明直接问题和反两方面问题的解决方案都是模型上概率推理的特殊例子。我们讨论,该模型为应付不稳定的攻击关系提供了一种自然延伸的语义来自然延伸,以便应付不稳定的攻击关系分布在概率上。我们从经验的角度认为,它合理地预测了个人对可接受性论点的看法。本文有助于为建立可接受语义学数据驱动的基础和提供解决获取知识的渠道。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
已删除
将门创投
4+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
已删除
将门创投
4+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员