Deep learning has advanced deformable image registration, surpassing traditional optimization-based methods in both accuracy and efficiency. However, learning-based models are widely believed to be sensitive to domain shift, with robustness typically pursued through large and diverse training datasets, without explaining the underlying mechanisms. In this work, we show that domain-shift immunity is an inherent property of deep deformable registration models, arising from their reliance on local feature representations rather than global appearance for deformation estimation. To isolate and validate this mechanism, we introduce UniReg, a universal registration framework that decouples feature extraction from deformation estimation using fixed, pre-trained feature extractors and a UNet-based deformation network. Despite training on a single dataset, UniReg exhibits robust cross-domain and multi-modal performance comparable to optimization-based methods. Our analysis further reveals that failures of conventional CNN-based models under modality shift originate from dataset-induced biases in early convolutional layers. These findings identify local feature consistency as the key driver of robustness in learning-based deformable registration and motivate backbone designs that preserve domain-invariant local features.


翻译:深度学习已推动可变形图像配准领域的发展,在精度与效率上均超越了传统的基于优化的方法。然而,学界普遍认为基于学习的模型对领域偏移敏感,其鲁棒性通常通过大规模多样化训练数据集来追求,而未解释其内在机制。本研究表明,领域偏移免疫性是深度可变形配准模型的内在属性,源于其依赖局部特征表示而非全局外观进行形变估计。为分离并验证该机制,我们提出了UniReg——一种通用配准框架,通过使用固定的预训练特征提取器与基于UNet的形变网络,将特征提取与形变估计解耦。尽管仅在单一数据集上训练,UniReg展现出与基于优化方法相当的跨领域与多模态鲁棒性能。进一步分析表明,传统基于CNN的模型在模态偏移下的失效源于早期卷积层中数据集导致的偏差。这些发现确立了局部特征一致性作为基于学习的可变形配准中鲁棒性的关键驱动因素,并启发了能够保持领域不变局部特征的骨干网络设计。

0
下载
关闭预览

相关内容

AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员