From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). By restricting the computation that can be expressed and introducing new techniques to partition and distribute the graph, these systems can efficiently execute iterative graph algorithms orders of magnitude faster than more general data-parallel systems. However, the same restrictions that enable the performance gains also make it difficult to express many of the important stages in a typical graph-analytics pipeline: constructing the graph, modifying its structure, or expressing computation that spans multiple graphs. As a consequence, existing graph analytics pipelines compose graph-parallel and data-parallel systems using external storage systems, leading to extensive data movement and complicated programming model. To address these challenges we introduce GraphX, a distributed graph computation framework that unifies graph-parallel and data-parallel computation. GraphX provides a small, core set of graph-parallel operators expressive enough to implement the Pregel and PowerGraph abstractions, yet simple enough to be cast in relational algebra. GraphX uses a collection of query optimization techniques such as automatic join rewrites to efficiently implement these graph-parallel operators. We evaluate GraphX on real-world graphs and workloads and demonstrate that GraphX achieves comparable performance as specialized graph computation systems, while outperforming them in end-to-end graph pipelines. Moreover, GraphX achieves a balance between expressiveness, performance, and ease of use.


翻译:从社交网络到语言建模,图形数据规模和重要性的日益扩大驱动了众多新的图形平行系统(例如Pregel、Greab)的开发。通过限制可以表达的计算和采用新的方法分割和分布图形,这些系统能够有效地执行比一般数据平行系统更快的迭接图形算法数量顺序;然而,由于同样限制,使性能增益难以在典型的图形分析管道中表达许多重要阶段:构建图形,修改其结构,或表达跨越多个图形的计算。因此,现有的图表分析管道利用外部储存系统组成图形平行和数据平行系统,导致广泛的数据移动和复杂的编程模式。为了应对这些挑战,我们引入了图X,一个分布式的图形计算框架,使图形平面图和数据平行计算系统变得精细、图表平面操作器表示可以执行Pregel和Pow Graph的数学抽象数据,但足够简单,可以将图形平衡管道组成成图形平面图操作器,从而实现直径的平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面图。我们通过直地平面平面平面平面平面平平面平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2020年中国《知识图谱》行业研究报告,45页ppt
专知会员服务
239+阅读 · 2020年4月18日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
报告 | 2020中国5G经济报告,100页pdf
专知会员服务
97+阅读 · 2019年12月29日
电力人工智能发展报告,33页ppt
专知会员服务
125+阅读 · 2019年12月25日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2020年中国《知识图谱》行业研究报告,45页ppt
专知会员服务
239+阅读 · 2020年4月18日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
报告 | 2020中国5G经济报告,100页pdf
专知会员服务
97+阅读 · 2019年12月29日
电力人工智能发展报告,33页ppt
专知会员服务
125+阅读 · 2019年12月25日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
相关论文
Top
微信扫码咨询专知VIP会员