The use of euphemisms is a known driver of language change. It has been proposed that women use euphemisms more than men. Although there have been several studies investigating gender differences in language, the claim about euphemism usage has not been tested comprehensively through time. If women do use euphemisms more, this could mean that women also lead the formation of new euphemisms and language change over time. Using four large diachronic text corpora of English, we evaluate the claim that women use euphemisms more than men through a quantitative analysis. We assembled a list of 106 euphemism-taboo pairs to analyze their relative use through time by each gender in the corpora. Contrary to the existing belief, our results show that women do not use euphemisms with a higher proportion than men. We repeated the analysis using different subsets of the euphemism-taboo pairs list and found that our result was robust. Our study indicates that in a broad range of settings involving both speech and writing, and with varying degrees of formality, women do not use or form euphemisms more than men.


翻译:使用委婉论是语言变化的一个已知驱动因素,有人提议妇女比男性更多地使用委婉论。虽然已经进行了若干项研究,调查了语言中的性别差异,但有关使用委婉论的说法没有经过时间的全面检验。如果妇女确实更多地使用委婉论,这可能意味着妇女也随着时间推移而引领形成新的委婉论和语言变化。我们使用英语的四大二元文字组合,通过定量分析评估妇女使用委婉论多于男性的说法。我们收集了一份106个电子委婉论-塔博对子的清单,通过时间分析每个性别对语言的相对使用情况。与现有的信仰相反,我们的结果显示妇女没有使用比男性比例更高的委婉论。我们重复了使用委婉论-调对等列表的不同子的分析,发现我们的结果是稳健的。我们的研究显示,在涉及言论和写作的多种场合中,以及形式不同程度的女性不使用或形式上男性更强。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月28日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员