This work presents a fast successive-cancellation list flip (Fast-SCLF) decoding algorithm for polar codes that addresses the high latency issue associated with the successive-cancellation list flip (SCLF) decoding algorithm. We first propose a bit-flipping strategy tailored to the state-of-the-art fast successive-cancellation list (FSCL) decoding that avoids tree-traversal in the binary tree representation of SCLF, thus reducing the latency of the decoding process. We then derive a parameterized path-selection error model to accurately estimate the bit index at which the correct decoding path is eliminated from the initial FSCL decoding. The trainable parameter is optimized online based on an efficient supervised learning framework. Simulation results show that for a polar code of length 512 with 256 information bits, with similar error-correction performance and memory consumption, the proposed Fast-SCLF decoder reduces up to $73.4\%$ of the average decoding latency of the SCLF decoder with the same list size at the frame error rate of $10^{-4}$, while incurring a maximum computational overhead of $36.2\%$. For the same polar code of length 512 with 256 information bits and at practical signal-to-noise ratios, the proposed decoder with list size 4 reduces $89.1\%$ and $43.7\%$ of the average complexity and decoding latency of the FSCL decoder with list size 32 (FSCL-32), respectively, while also reducing $83.3\%$ of the memory consumption of FSCL-32. The significant improvements of the proposed decoder come at the cost of only $0.07$ dB error-correction performance degradation compared with FSCL-32.
翻译:这项工作为极地代码提供了一个快速的连续取消列表翻转( Fast- SCLF) 解码算法( Fast- SCLF), 该算法可以解决与连续取消列表翻转( SCLF) 解码算法相关的高潜值问题。 我们首先提出一个针对最先进的快速连续取消列表解码算法( FSCLF) 解码策略( FSCL), 避免在 SSCLF 的双树代表制中进行树际交易, 从而降低解码过程的透明性能。 我们随后推出一个参数化路径选择错误模型, 以精确估计正确解码路径从初始 FSCL解码( SCLF) 解码( SCLF) 解码( SCLF32) 解码法( FlCLF ) 解码( FlCLF ) 解码法( FLF) 的精度( FitLF) 校正值比值的比值。 3LFLF- dislexeral deal deal de dislation lax lax lax lax lax lax lax lax lax lax lax lax d lax lax lax lax lax lax lax lax lax la la lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax la la lax lax la la la la la lax lax lax lax lax la la la la la lax lax la la lax lax lax lax la la lax la la la