Sarcasm detection in product reviews requires balancing domain-specific symbolic pattern recognition with deep semantic understanding. Symbolic representations capture explicit linguistic phenomena that are often decisive for sarcasm detection. Existing work either favors interpretable symbolic representation or semantic neural modeling, but rarely achieves both effectively. Prior hybrid methods typically combine these paradigms through feature fusion or ensembling, which can degrade performance. We propose CascadeNS, a confidence-calibrated neurosymbolic architecture that integrates symbolic and neural reasoning through selective activation rather than fusion. A symbolic semigraph handles pattern-rich instances with high confidence, while semantically ambiguous cases are delegated to a neural module based on pre-trained LLM embeddings. At the core of CascadeNS is a calibrated confidence measure derived from polarity-weighted semigraph scores. This measure reliably determines when symbolic reasoning is sufficient and when neural analysis is needed. Experiments on product reviews show that CascadeNS outperforms the strong baselines by 7.44%.
翻译:产品评论中的讽刺检测需要在领域特定的符号模式识别与深度语义理解之间取得平衡。符号表示能够捕捉对讽刺检测通常具有决定性作用的显性语言现象。现有研究要么偏向可解释的符号表示,要么侧重语义神经建模,但很少能同时有效实现两者。先前的混合方法通常通过特征融合或集成来结合这些范式,但这可能导致性能下降。我们提出了CascadeNS,一种置信度校准的神经符号架构,通过选择性激活而非融合来整合符号与神经推理。符号半图以高置信度处理模式丰富的实例,而语义模糊的案例则交由基于预训练LLM嵌入的神经模块处理。CascadeNS的核心是一个从极性加权半图分数导出的校准置信度度量。该度量能够可靠地判断何时符号推理已足够,以及何时需要神经分析。在产品评论数据集上的实验表明,CascadeNS以7.44%的优势超越了现有强基线模型。