Narrative visualization is a powerful communicative tool that can take on various formats such as interactive articles, slideshows, and data videos. These formats each have their strengths and weaknesses, but existing authoring tools only support one output target. We conducted a series of formative interviews with seven domain experts to understand needs and practices around cross-format data stories, and developed Fidyll, a cross-format compiler for authoring interactive data stories and explorable explanations. Our open-source tool can be used to rapidly create formats including static articles, low-motion articles, interactive articles, slideshows, and videos. We evaluate our system through a series of real-world usage scenarios, showing how it benefits authors in the domains of data journalism, scientific publishing, and nonprofit advocacy. We show how Fidyll, provides expressive leverage by reducing the amount of non-narrative markup that authors need to write by 80-90% compared to Idyll, an existing markup language for authoring interactive articles.


翻译:叙述性可视化是一个强有力的交流工具,可以采用互动文章、幻灯片放映和数据视频等各种格式。这些格式都有其优点和弱点,但现有的作者工具只能支持一个产出目标。我们与七个领域专家进行了一系列的形成性访谈,以了解跨格式数据故事方面的需要和做法,并开发了Fidyll,这是一个用于撰写交互式数据故事和可探索解释的跨格式汇编器。我们的开放源码工具可以用来迅速创建各种格式,包括静态文章、低动文章、交互式文章、幻灯片放映和视频。我们通过一系列真实世界使用情景来评估我们的系统,显示它在数据新闻、科学出版和非盈利宣传领域如何使作者受益。我们展示Fidyll如何通过减少作者需要撰写80-90%的非叙述性标记的数量来提供表达力,而Idyll则是编写交互式文章的一种现有标记语言。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月7日
Arxiv
0+阅读 · 2022年7月5日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员