Truth can vary over time. Fact-checking decisions on claim veracity should therefore take into account temporal information of both the claim and supporting or refuting evidence. In this work, we investigate the hypothesis that the timestamp of a Web page is crucial to how it should be ranked for a given claim. We delineate four temporal ranking methods that constrain evidence ranking differently and simulate hypothesis-specific evidence rankings given the evidence timestamps as gold standard. Evidence ranking in three fact-checking models is ultimately optimized using a learning-to-rank loss function. Our study reveals that time-aware evidence ranking not only surpasses relevance assumptions based purely on semantic similarity or position in a search results list, but also improves veracity predictions of time-sensitive claims in particular.
翻译:因此,在对索赔真实性进行事实审查时,应考虑到索赔的时间信息以及佐证或反驳证据。在这项工作中,我们调查一个假设,即网页的印记时间对某一索赔的排名至关重要。我们划定了四种时间排序方法,这些方法限制证据的排序不同,并模拟了根据证据时间标记作为黄金标准对具体假设证据的排名。三个事实核对模型中的证据排名最终通过学习到排序的损失功能得到优化。我们的研究显示,时间识别证据的排名不仅超过了纯粹基于语义相似性或搜索结果列表中的位置的相关假设,而且还特别改进了对时间敏感索赔的真实性预测。