Marching squares (MS) and marching cubes (MC) are widely used algorithms for level-set visualization of scientific data. In this paper, we address the challenge of uncertainty visualization of the topology cases of the MS and MC algorithms for uncertain scalar field data sampled on a uniform grid. The visualization of the MS and MC topology cases for uncertain data is challenging due to their exponential nature and the possibility of multiple topology cases per cell of a grid. We propose the topology case count and entropy-based techniques for quantifying uncertainty in the topology cases of the MS and MC algorithms when noise in data is modeled with probability distributions. We demonstrate the applicability of our techniques for independent and correlated uncertainty assumptions. We visualize the quantified topological uncertainty via color mapping proportional to uncertainty, as well as with interactive probability queries in the MS case and entropy isosurfaces in the MC case. We demonstrate the utility of our uncertainty quantification framework in identifying the isovalues exhibiting relatively high topological uncertainty. We illustrate the effectiveness of our techniques via results on synthetic, simulation, and hixel datasets.
翻译:在科学数据水平定型可视化方面,三进方形(MS)和行进立方体(MC)是广泛使用的算法。在本文件中,我们应对在统一网格中抽样的MS和MC算法的地形学案例的不确定性直观化挑战,用于在统一网格中抽样的不确定的斯卡路实地数据。由于MS和MC的地形学案例的指数性以及每个网格的每个单元格都可能有多个表层学案例,因此对不确定数据的可视化具有挑战性。我们提议在用概率分布模型模拟数据中的噪音时,采用MS和MC算法的地形学案例计数和基于酶的计算技术,以量化其地形学案例的不确定性。我们展示了我们技术在独立和相关的不确定性假设方面的适用性。我们通过比例与不确定性相称的色图绘制,以及通过在MS案件中的交互式概率查询,以及在MC案中的摄像表表表表表表表表层表面。我们展示了我们的不确定性量化框架在确定显示相对高的表层不确定性的等值方面的效用。我们通过合成、模拟和柱形数据设置的结果来说明我们的技术的有效性。