A Roman dominating function for a (non-weighted) graph $G=(V,E)$, is a function $f:V\rightarrow \{0,1,2\}$ such that every vertex $u\in V$ with $f(u)=0$ has at least {one} neighbor $v\in V$ such that $f(v)=2$. The minimum weight $\sum_{v\in V}f(v)$ of a Roman {dominating function} $f$ on $G$ is called the Roman domination number of $G$ and is denoted by $γ_{R}(G)$. A graph {$G= (V,E)$} together with a positive real-valued weight-function $w:V\rightarrow \mathbf{R}^{>0}$ is called a {\it weighted graph} and is denoted by $(G;w)$. The minimum weight $\sum_{v\in V}f(v)w(v)$ of a Roman {dominating function} $f$ on $G$ is called the weighted Roman domination number of $G$ and is denoted by $γ_{wR}(G)$. The domination and Roman domination numbers of unweighted graphs have been extensively studied, particularly for their applications in bioinformatics and computational biology. However, graphs used to model biomolecular structures often require weights to be biologically meaningful. In this paper, we initiate the study of the weighted Roman domination number in weighted graphs. We first establish several bounds for this parameter and present various realizability results. Furthermore, we determine the exact values for several well-known graph families and demonstrate an equivalence between the weighted Roman domination number and the differential of a weighted graph.
翻译:对于(非加权)图 $G=(V,E)$,一个罗马控制函数是一个函数 $f:V\rightarrow \{0,1,2\}$,使得每个满足 $f(u)=0$ 的顶点 $u\in V$ 至少有一个邻居 $v\in V$ 满足 $f(v)=2$。图 $G$ 上罗马控制函数 $f$ 的最小权重 $\sum_{v\in V}f(v)$ 称为 $G$ 的罗马控制数,记作 $γ_{R}(G)$。一个图 $G= (V,E)$ 连同其正实值权重函数 $w:V\rightarrow \mathbf{R}^{>0}$ 被称为一个加权图,记作 $(G;w)$。图 $G$ 上罗马控制函数 $f$ 的最小权重 $\sum_{v\in V}f(v)w(v)$ 称为 $G$ 的加权罗马控制数,记作 $γ_{wR}(G)$。非加权图的控制数与罗马控制数已被广泛研究,特别是在生物信息学和计算生物学中的应用。然而,用于建模生物分子结构的图通常需要权重才能具有生物学意义。本文首次对加权图中的加权罗马控制数展开研究。我们首先为该参数建立了若干界,并给出了多种可实现性结果。此外,我们确定了若干著名图族的精确值,并证明了加权罗马控制数与加权图的微分之间的等价关系。