It is shown that the problem of computing the Strahler number of a binary tree given as a term is complete for the circuit complexity class uniform $\mathsf{NC}^1$. For several variants, where the binary tree is given by a pointer structure or in a succinct form by a directed acyclic graph or a tree straight-line program, the complexity of computing the Strahler number is determined as well. The problem, whether a given context-free grammar in Chomsky normal form produces a derivation tree (resp., an acyclic derivation tree), whose Strahler number is at least a given number $k$ is shown to be P-complete (resp., PSPACE-complete).
翻译:本文证明了,对于以项形式给出的二叉树,计算其 Strahler 数的问题对于电路复杂度类 uniform $\mathsf{NC}^1$ 是完全的。对于二叉树的几种变体表示形式——例如通过指针结构、通过有向无环图以简洁形式表示,或通过树状直线程序表示——计算 Strahler 数的复杂度也得以确定。此外,对于给定的乔姆斯基范式下的上下文无关文法,判断其是否产生一个 Strahler 数至少为给定值 $k$ 的派生树(相应地,无环派生树)的问题,被证明是 P-完全的(相应地,PSPACE-完全的)。