In the context of the optimization of rotating electric machines, many different objective functions are of interest and considering this during the optimization is of crucial importance. While evolutionary algorithms can provide a Pareto front straightforwardly and are widely used in this context, derivative-based optimization algorithms can be computationally more efficient. In this case, a Pareto front can be obtained by performing several optimization runs with different weights. In this work, we focus on a free-form shape optimization approach allowing for arbitrary motor geometries. In particular, we propose a way to efficiently obtain Pareto-optimal points by moving along to the Pareto front exploiting a homotopy method based on second order shape derivatives.
翻译:暂无翻译