Electronic medical records (EMRs) are stored in relational databases. It can be challenging to access the required information if the user is unfamiliar with the database schema or general database fundamentals. Hence, researchers have explored text-to-SQL generation methods that provide healthcare professionals direct access to EMR data without needing a database expert. However, currently available datasets have been essentially "solved" with state-of-the-art models achieving accuracy greater than or near 90%. In this paper, we show that there is still a long way to go before solving text-to-SQL generation in the medical domain. To show this, we create new splits of the existing medical text-to-SQL dataset MIMICSQL that better measure the generalizability of the resulting models. We evaluate state-of-the-art language models on our new split showing substantial drops in performance with accuracy dropping from up to 92% to 28%, thus showing substantial room for improvement. Moreover, we introduce a novel data augmentation approach to improve the generalizability of the language models. Overall, this paper is the first step towards developing more robust text-to-SQL models in the medical domain.\footnote{The dataset and code will be released upon acceptance.
翻译:电子病历(EMR)存储在关系数据库中。如果用户不熟悉数据库架构或数据库基础知识,则访问所需信息可能会很具挑战性。因此,研究人员探索了文本到SQL生成方法,为医疗保健专业人士提供直接访问EMR数据的方法,而无需数据库专家。但是,当前可用的数据集已经基本上被"解决" ,最先进的模型实现的准确性大于或接近90%。在本文中,我们展示了在解决医学领域的文本到SQL生成之前还有很长的路要走。为了表明这一点,我们创建了现有医疗文本到SQL数据集MIMICSQL的新分割,更好地衡量所得到的模型的通用性。我们评估最先进的语言模型在新分割上的表现,表现大幅下降,准确性从最高达到92%下降到了28%,因此显示了极大的改进空间。此外,我们介绍了一种新的数据增强方法,以提高语言模型的泛化能力。总的来说,本文是开发更强大的医学领域文本到SQL模型的第一步。 (数据集和代码将在接受后发布)