Electronic medical records (EMRs) are stored in relational databases. It can be challenging to access the required information if the user is unfamiliar with the database schema or general database fundamentals. Hence, researchers have explored text-to-SQL generation methods that provide healthcare professionals direct access to EMR data without needing a database expert. However, currently available datasets have been essentially "solved" with state-of-the-art models achieving accuracy greater than or near 90%. In this paper, we show that there is still a long way to go before solving text-to-SQL generation in the medical domain. To show this, we create new splits of the existing medical text-to-SQL dataset MIMICSQL that better measure the generalizability of the resulting models. We evaluate state-of-the-art language models on our new split showing substantial drops in performance with accuracy dropping from up to 92% to 28%, thus showing substantial room for improvement. Moreover, we introduce a novel data augmentation approach to improve the generalizability of the language models. Overall, this paper is the first step towards developing more robust text-to-SQL models in the medical domain.\footnote{The dataset and code will be released upon acceptance.


翻译:电子病历(EMR)存储在关系数据库中。如果用户不熟悉数据库架构或数据库基础知识,则访问所需信息可能会很具挑战性。因此,研究人员探索了文本到SQL生成方法,为医疗保健专业人士提供直接访问EMR数据的方法,而无需数据库专家。但是,当前可用的数据集已经基本上被"解决" ,最先进的模型实现的准确性大于或接近90%。在本文中,我们展示了在解决医学领域的文本到SQL生成之前还有很长的路要走。为了表明这一点,我们创建了现有医疗文本到SQL数据集MIMICSQL的新分割,更好地衡量所得到的模型的通用性。我们评估最先进的语言模型在新分割上的表现,表现大幅下降,准确性从最高达到92%下降到了28%,因此显示了极大的改进空间。此外,我们介绍了一种新的数据增强方法,以提高语言模型的泛化能力。总的来说,本文是开发更强大的医学领域文本到SQL模型的第一步。 (数据集和代码将在接受后发布)

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
79+阅读 · 2021年7月3日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
NLP中自动生产文摘(auto text summarization)
机器学习研究会
14+阅读 · 2017年10月10日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2022年12月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
NLP中自动生产文摘(auto text summarization)
机器学习研究会
14+阅读 · 2017年10月10日
相关基金
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员