High-Performance Big Data Analytics (HPDA) applications are characterized by huge volumes of distributed and heterogeneous data that require efficient computation for knowledge extraction and decision making. Designers are moving towards a tight integration of computing systems combining HPC, Cloud, and IoT solutions with artificial intelligence (AI). Matching the application and data requirements with the characteristics of the underlying hardware is a key element to improve the predictions thanks to high performance and better use of resources. We present EVEREST, a novel H2020 project started on October 1st, 2020 that aims at developing a holistic environment for the co-design of HPDA applications on heterogeneous, distributed, and secure platforms. EVEREST focuses on programmability issues through a data-driven design approach, the use of hardware-accelerated AI, and an efficient runtime monitoring with virtualization support. In the different stages, EVEREST combines state-of-the-art programming models, emerging communication standards, and novel domain-specific extensions. We describe the EVEREST approach and the use cases that drive our research.
翻译:高性能大数据分析(HPDA)应用的特点是大量分布式和多样化的数据,需要高效地计算知识提取和决策。设计者正在逐步将计算机系统紧密整合,将HPC、云和IoT解决方案与人工智能相结合(AI)。应用和数据要求与基础硬件的特点相匹配,是改进预测的关键因素,因为业绩高,资源得到更好的利用。我们介绍了EverEST,一个于2020年10月1日开始的新颖的H2020项目,旨在开发一种整体环境,共同设计HPDA在不同、分布式和安全平台上的应用。EverEST通过数据驱动的设计方法、硬件加速AI的使用以及高效运行时间监测与虚拟化支持,侧重于可编程问题。在不同阶段,EWEST将最新设计模式、新兴通信标准和新的特定域扩展结合起来。我们描述了EWEST方法和驱动我们研究的使用案例。