The number of parameters in deep neural networks (DNNs) is scaling at about 5$\times$ the rate of Moore's Law. To sustain this growth, photonic computing is a promising avenue, as it enables higher throughput in dominant general matrix-matrix multiplication (GEMM) operations in DNNs than their electrical counterpart. However, purely photonic systems face several challenges including lack of photonic memory and accumulation of noise. In this paper, we present an electro-photonic accelerator, ADEPT, which leverages a photonic computing unit for performing GEMM operations, a vectorized digital electronic ASIC for performing non-GEMM operations, and SRAM arrays for storing DNN parameters and activations. In contrast to prior works in photonic DNN accelerators, we adopt a system-level perspective and show that the gains while large are tempered relative to prior expectations. Our goal is to encourage architects to explore photonic technology in a more pragmatic way considering the system as a whole to understand its general applicability in accelerating today's DNNs. Our evaluation shows that ADEPT can provide, on average, 5.73$\times$ higher throughput per Watt compared to the traditional systolic arrays (SAs) in a full-system, and at least 6.8$\times$ and $2.5\times$ better throughput per Watt, compared to state-of-the-art electronic and photonic accelerators, respectively.


翻译:深神经网络( DNNS) 的参数数量正在以摩尔法律的速率以约5美元计。 为了维持这一增长,光度计算是一个充满希望的途径,因为它使得DNS中占主导地位的通用矩阵矩阵矩阵倍增(GEMM)操作的传输量高于其电源。然而,纯光度系统面临若干挑战,包括缺乏光度记忆和噪音累积。在本文中,我们展示了一个电子-光速加速器ADEPT,它利用一个光度计算单位来进行GEMM操作,一个用于进行非GEMM操作的矢量数字电子ASIC,以及用于存储 DNM参数和激活的SRAM阵列。与以前在DNNS光度加速器中的工作相比,我们采用了系统层面的观点,表明虽然大得比以往预期要慢。我们的目标是鼓励建筑师以更务实的方式探索光度技术,将该系统作为一个整体来理解其在今天加速 DNPNPS的运行中的通用应用性。我们的评估显示,在平均、最高汇率和最高汇率上,从最高汇率到最高汇率到最高汇率。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
23+阅读 · 2018年10月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员