Orbit-finite models of computation generalise the standard models of computation, to allow computation over infinite objects that are finite up to symmetries on atoms, denoted by $\mathbb{A}$. Set theory with atoms is used to reason about these objects. Recent work assumes that $\mathbb{A}$ is countable and that the symmetries are the automorphisms of a structure on $\mathbb{A}$. We study this set theory to understand generalisations of this approach. We show that: this construction is well-defined and sufficiently expressive; and that automorphism groups are adequate. Certain uncountable structures appear similar to countable structures, suggesting that the theory of orbit-finite constructions may apply to these uncountable structures. We prove results guaranteeing that the theory of symmetries of two structures are equal. Let: $PM(\mathcal{A})$ be the universe of symmetries induced by adding atoms in bijection with $\mathcal{A}$ and considering the symmetric universe; $\underline{\mathcal{A}}$ be the image of $\mathcal{A}$ on the atoms; and $φ^{PM(\mathcal{A})}$ be the relativisation of $φ$ to $PM(\mathcal{A})$. We prove that all symmetric universes of equality atoms have theory $Th(PM(\left\langle \mathbb{N}\right\rangle))$. We prove that for structures $\mathcal{A}$, `nicely' covered by a set of cardinality $κ$, there is a structure $\mathcal{B}\equiv\mathcal{A}$ of size $κ$ such that for all formulae $φ(x)$ in one variable, \begin{equation*} ZFC\vdash φ(\underline{\mathcal{A}})^{PM(\mathcal{A})}\leftrightarrowφ(\underline{\mathcal{B}})^{PM(\mathcal{B})} \end{equation*}
翻译:轨道有限计算模型推广了标准的计算模型,允许在原子(记为$\\mathbb{A}$)上对称性意义下有限的无限对象上进行计算。原子集合论被用于推理这些对象。近期研究假设$\\mathbb{A}$是可数的,且对称性是$\\mathbb{A}$上某个结构的自同构群。我们研究该集合论以理解此方法的推广。我们证明:该构造是良定义且充分表达的;自同构群是完备的。某些不可数结构表现出与可数结构相似的性质,表明轨道有限构造理论可能适用于这些不可数结构。我们证明了保证两个结构对称性理论相等的结论。令:$PM(\\mathcal{A})$为通过双射添加原子$\\mathcal{A}$并考虑对称宇宙所诱导的对称性全域;$\\underline{\\mathcal{A}}$为$\\mathcal{A}$在原子上的像;$φ^{PM(\\mathcal{A})}$为$φ$对$PM(\\mathcal{A})$的相对化。我们证明所有等式原子对称宇宙的理论均为$Th(PM(\\left\\langle \\mathbb{N}\\right\\rangle))$。我们证明对于被基数为$κ$的集合'良好'覆盖的结构$\\mathcal{A}$,存在大小为$κ$的结构$\\mathcal{B}\\equiv\\mathcal{A}$,使得对所有单变量公式$φ(x)$,\\begin{equation*} ZFC\\vdash φ(\\underline{\\mathcal{A}})^{PM(\\mathcal{A})}\\leftrightarrowφ(\\underline{\\mathcal{B}})^{PM(\\mathcal{B})} \\end{equation*}成立。