Quadrotors are among the most agile flying robots. However, planning time-optimal trajectories at the actuation limit through multiple waypoints remains an open problem. This is crucial for applications such as inspection, delivery, search and rescue, and drone racing. Early works used polynomial trajectory formulations, which do not exploit the full actuator potential because of their inherent smoothness. Recent works resorted to numerical optimization but require waypoints to be allocated as costs or constraints at specific discrete times. However, this time allocation is a priori unknown and renders previous works incapable of producing truly time-optimal trajectories. To generate truly time-optimal trajectories, we propose a solution to the time allocation problem while exploiting the full quadrotor's actuator potential. We achieve this by introducing a formulation of progress along the trajectory, which enables the simultaneous optimization of the time allocation and the trajectory itself. We compare our method against related approaches and validate it in real-world flights in one of the world's largest motion-capture systems, where we outperform human expert drone pilots in a drone-racing task.


翻译:四方是最灵活的飞行机器人之一。 但是,在多个路径点的启动极限上规划最短的时间轨迹仍然是一个尚未解决的问题。 这对诸如检查、交付、搜索和救援以及无人机赛车等应用来说至关重要。 早期工程使用多元轨迹配方, 由于其固有的光滑性, 没有利用全部导体的潜力。 最近的工作采用数字优化, 但在特定的离散时间需要将路标作为成本或限制来分配。 然而, 时间分配是一个先验的未知点, 使得先前的工程无法产生真正最短的时间轨迹。 要产生真正最短的时间轨迹, 我们提出时间分配问题的解决方案, 同时开发完整的二次轨迹的潜能。 我们沿着轨迹推出一个进度配方, 从而能够同时优化时间分配和轨迹本身。 我们比较了我们的方法, 并在世界上最大的运动定位系统中的一个真实世界航班上验证了它。 我们的无人机能比人驾驶的无人机飞行实验。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Extended Tree Search for Robot Task and Motion Planning
Arxiv
3+阅读 · 2021年6月9日
Arxiv
5+阅读 · 2021年2月8日
VIP会员
相关VIP内容
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员