Encoder layer fusion (EncoderFusion) is a technique to fuse all the encoder layers (instead of the uppermost layer) for sequence-to-sequence (Seq2Seq) models, which has proven effective on various NLP tasks. However, it is still not entirely clear why and when EncoderFusion should work. In this paper, our main contribution is to take a step further in understanding EncoderFusion. Many of previous studies believe that the success of EncoderFusion comes from exploiting surface and syntactic information embedded in lower encoder layers. Unlike them, we find that the encoder embedding layer is more important than other intermediate encoder layers. In addition, the uppermost decoder layer consistently pays more attention to the encoder embedding layer across NLP tasks. Based on this observation, we propose a simple fusion method, SurfaceFusion, by fusing only the encoder embedding layer for the softmax layer. Experimental results show that SurfaceFusion outperforms EncoderFusion on several NLP benchmarks, including machine translation, text summarization, and grammatical error correction. It obtains the state-of-the-art performance on WMT16 Romanian-English and WMT14 English-French translation tasks. Extensive analyses reveal that SurfaceFusion learns more expressive bilingual word embeddings by building a closer relationship between relevant source and target embedding. Source code is freely available at https://github.com/SunbowLiu/SurfaceFusion.
翻译:编码器层融合 (EncoderFusion) 是将所有编码器层( 而不是最上层层) 整合成序列到序列模型的一种技术, 这在各种 NLP 任务中证明是有效的。 但是, 仍然不完全清楚为什么和何时应该使用 EcoderFusion 。 在本文件中, 我们的主要贡献是进一步理解编码器 Fusion 。 许多先前的研究都认为, 编码器Fusion 的成功来自于利用位于下层的表面和合成信息。 与它们不同, 我们发现, 编码器嵌入层比其它中间编码器层要重要。 此外, 最上层解码层始终更加关注 NLP 任务中的编码嵌入层。 基于此观察, 我们建议一种简单的聚合法, 表面Fusion 嵌入软体层的源代码。 实验结果显示, 地表Fion- deliformal dismal disolation Squal- deliverationsal- frmalationsal- demologyal- demologyal- mission S.