Knowledge Extraction (KE) which aims to extract structural information from unstructured texts often suffers from data scarcity and emerging unseen types, i.e., low-resource scenarios. Many neural approaches on low-resource KE have been widely investigated and achieved impressive performance. In this paper, we present a literature review towards KE in low-resource scenarios, and systematically categorize existing works into three paradigms: (1) exploiting higher-resource data, (2) exploiting stronger models, and (3) exploiting data and models together. In addition, we describe promising applications and outline some potential directions for future research. We hope that our survey can help both the academic and industrial community to better understand this field, inspire more ideas and boost broader applications.


翻译:旨在从非结构化文本中提取结构性信息的《知识提取》(KE)往往缺乏数据,而且出现了新的不可见类型,即低资源情景。许多关于低资源 KE的神经方法已经受到广泛调查并取得了令人印象深刻的业绩。在本文中,我们介绍了在低资源情景下对KE的文献审查,并将现有作品系统地分为三种模式:(1) 利用高资源数据,(2) 利用更强大的模型,(3) 共同利用数据和模型。此外,我们描述了有希望的应用,并概述了未来研究的一些潜在方向。我们希望我们的调查能够帮助学术界和产业界更好地了解这一领域,激发更多想法,促进更广泛的应用。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
26+阅读 · 2022年1月3日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
28+阅读 · 2021年10月1日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
26+阅读 · 2022年1月3日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
28+阅读 · 2021年10月1日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员