User interactions with recommender systems (RSs) are affected by user selection bias, e.g., users are more likely to rate popular items (popularity bias) or items that they expect to enjoy beforehand (positivity bias). Methods exist for mitigating the effects of selection bias in user ratings on the evaluation and optimization of RSs. However, these methods treat selection bias as static, despite the fact that the popularity of an item may change drastically over time and the fact that user preferences may also change over time. We focus on the age of an item and its effect on selection bias and user preferences. Our experimental analysis reveals that the rating behavior of users on the MovieLens dataset is better captured by methods that consider effects from the age of item on bias and preferences. We theoretically show that in a dynamic scenario in which both the selection bias and user preferences are dynamic, existing debiasing methods are no longer unbiased. To address this limitation, we introduce DebiAsing in the dyNamiC scEnaRio (DANCER), a novel debiasing method that extends the inverse propensity scoring debiasing method to account for dynamic selection bias and user preferences. Our experimental results indicate that DANCER improves rating prediction performance compared to debiasing methods that incorrectly assume that selection bias is static in a dynamic scenario. To the best of our knowledge, DANCER is the first debiasing method that accounts for dynamic selection bias and user preferences in RSs.


翻译:用户与建议系统(RSs)的用户互动受到用户选择偏好的影响,例如,用户更有可能对受欢迎项目(大众偏好)或他们期望事先享有的物品进行评级(物质偏好),有方法可以减轻用户评级中选择偏向对评价和优化RSs的影响。然而,这些方法将选择偏向视为静态,尽管项目受欢迎程度可能随时间而急剧变化,用户偏好也可能随时间而变化。我们侧重于项目的年龄及其对选择偏向和用户偏好的影响。我们的实验分析显示,通过考虑项目年代对偏向和偏向的影响的方法,更能捕捉到MeopleLens偏向数据集数据集的用户评级行为。我们理论上显示,在选择偏向和用户偏向的动态假设中,选择偏向现有偏向方法不再公正。为了解决这一限制,我们引入了DYNamiC Stampal Enario (DENCER),这是一种新的分化方法,将首选取不偏向用户偏向用户偏向的用户偏向性选择选择选择选择选择选择周期的方法,而我们选择客户偏向性选择周期的试向性选择选择周期的方法是假设。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
57+阅读 · 2020年2月25日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
8+阅读 · 2019年6月13日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年6月13日
Top
微信扫码咨询专知VIP会员