The linear minimum mean squared error (LMMSE) estimator is the best linear estimator for a Bayesian linear inverse problem with respect to the mean squared error. It arises as the solution operator to a Tikhonov-type regularized inverse problem with a particular quadratic discrepancy term and a particular quadratic regularization operator. To be able to evaluate the LMMSE estimator, one must know the forward operator and the first two statistical moments of both the prior and the noise. If such knowledge is not available, one may approximate the LMMSE estimator based on given samples. In this work, it is investigated, in a finite-dimensional setting, how many samples are needed to reliably approximate the LMMSE estimator, in the sense that, with high probability, the mean squared error of the approximation is smaller than a given multiple of the mean squared error of the LMMSE estimator.
翻译:线性最小平均平方差( LMMSE) 估计值是 Bayesian 线性反差问题与平均平方差错相比的最佳线性估计值。 它的产生原因是 Tikhoonov 型常规反向问题的操作员与特定二次差异术语和特定二次身份正规化操作员的解决方法。 要能够评价 LMMSE 估计值, 就必须知道前两次和噪音的前两次操作员和前两次统计时段。 如果没有这种知识, 可以根据给定的样本接近 LMMSE 估计值。 在这项工作中, 要可靠地接近 LMMSE 估计值, 需要多少样本, 也就是说, 极有可能, 近似值的平均平方差小于 LMMSE 估计值的平均平方差的一定倍。