Current AI systems at the tactical edge lack the computational resources to support in-situ training and inference for situational awareness, and it is not always practical to leverage backhaul resources due to security, bandwidth, and mission latency requirements. We propose a solution through Deep delay Loop Reservoir Computing (DLR), a processing architecture supporting general machine learning algorithms on compact mobile devices by leveraging delay-loop (DL) reservoir computing in combination with innovative photonic hardware exploiting the inherent speed, and spatial, temporal and wavelength-based processing diversity of signals in the optical domain. DLR delivers reductions in form factor, hardware complexity, power consumption and latency, compared to State-of-the-Art . DLR can be implemented with a single photonic DL and a few electro-optical components. In certain cases multiple DL layers increase learning capacity of the DLR with no added latency. We demonstrate the advantages of DLR on the application of RF Specific Emitter Identification.
翻译:目前战术边缘的人工智能系统缺乏计算资源,无法支持现场培训和情景意识推断,而且由于安全、带宽和任务潜伏要求,利用回流资源并非始终可行。我们提议通过深延路保藏计算(DLR)来找到解决办法,这是一个处理架构,通过利用延迟路保储量计算(DL),结合利用光学领域内在速度以及空间、时间和波长处理信号多样性的创新光学硬件,支持紧凑移动设备的一般机器学习算法,同时利用延迟路载储量计算(DL),同时利用光学领域的内在速度以及空间、时间和波长处理信号的多样性。DLR在形式因素、硬件复杂度、电耗和延时率方面实现减少,可采用单一光度DLRD(DL)和少数电子光学组件。在某些情况下,DL(DL)层多层提高DL(DL)的学习能力,而没有增加延迟度。我们展示DLR(R)特定Empister识别技术的优势。