This paper considers the single-server Private Linear Transformation (PLT) problem with individual privacy guarantees. In this problem, there is a user that wishes to obtain $L$ independent linear combinations of a $D$-subset of messages belonging to a dataset of $K$ messages stored on a single server. The goal is to minimize the download cost while keeping the identity of each message required for the computation individually private. The individual privacy requirement ensures that the identity of each individual message required for the computation is kept private. This is in contrast to the stricter notion of joint privacy that protects the entire set of identities of all messages used for the computation, including the correlations between these identities. The notion of individual privacy captures a broad set of practical applications. For example, such notion is relevant when the dataset contains information about individuals, each of them requires privacy guarantees for their data access patterns. We focus on the setting in which the required linear transformation is associated with a maximum distance separable (MDS) matrix. In particular, we require that the matrix of coefficients pertaining to the required linear combinations is the generator matrix of an MDS code. We establish lower and upper bounds on the capacity of PLT with individual privacy, where the capacity is defined as the supremum of all achievable download rates. We show that our bounds are tight under certain conditions.
翻译:本文考虑了个人隐私保障的单一服务器私人线性变换(PLT)问题。 在这一问题中,用户希望获得属于存储在单个服务器上的一套美元信息数据集的一组美元信息,其价值为K美元的信息的一组分包,其独立线性组合为$1美元。目标是最大限度地降低下载费用,同时保持计算个人隐私所需的每种信息的身份。个人隐私要求确保计算所需的每种信息的身份保持隐私。这与保护所有计算所用信息的全部身份,包括这些身份之间相互关系的更严格联合隐私概念形成对照。个人隐私概念包含一套广泛的实用应用程序。例如,当数据集包含个人信息时,这种概念是相关的,其中每一个信息都需要个人数据访问模式的隐私保障。我们侧重于将所需的线性变换与最大距离分解(MDS)矩阵相联系的设置。我们特别要求,与所要求的线性组合相关的系数矩阵是MDS代码的发电机矩阵。 个人隐私概念包含一套广泛的应用软件。 我们根据严格的隐私标准,将个人能力设定为可实现的可实现的隐私。