This work presents conjectures about eigenvalues of matrices associated with $k$-path graphs, the algebraic connectivity, defined as the second smallest eigenvalue of the Laplacian matrix, and the $α$-index, as the largest eigenvalue of the $A_α$-matrix. For this purpose, a process based in Pereira et al., is presented to generate lists of $k$-path graphs containing all non-isomorphic 2-paths, 3-paths, and 4-paths of order $n$, for $6 \leq n \leq 26, 8 \leq n \leq 19$, and $10 \leq n \leq 18$, respectively. Using these lists, exhaustive searches for extremal graphs of fixed order for the mentioned eigenvalues were performed. Based on the empirical results, conjectures are suggested about the structure of extremal $k$-path graphs for these eigenvalues.
翻译:本研究提出了关于k-路径图相关矩阵特征值的猜想,重点关注代数连通度(定义为拉普拉斯矩阵的第二小特征值)和α指数(定义为A_α矩阵的最大特征值)。为此,本文基于Pereira等人的方法,提出了一种生成k-路径图列表的流程,该列表包含所有非同构的2-路径、3-路径和4-路径图,其阶数n分别满足6 ≤ n ≤ 26、8 ≤ n ≤ 19和10 ≤ n ≤ 18。利用这些列表,我们对固定阶数下上述特征值的极值图进行了穷举搜索。基于实证结果,本文提出了关于这些特征值对应的极值k-路径图结构的猜想。