Lack of awareness and knowledge of microservices-specific security challenges and solutions often leads to ill-informed security decisions in microservices system development. We claim that identifying and leveraging security discussions scattered in existing microservices systems can partially close this gap. We define security discussion as "a paragraph from developer discussions that includes design decisions, challenges, or solutions relating to security". We first surveyed 67 practitioners and found that securing microservices systems is a unique challenge and that having access to security discussions is useful for making security decisions. The survey also confirms the usefulness of potential tools that can automatically identify such security discussions. We developed fifteen machine/deep learning models to automatically identify security discussions. We applied these models on a manually constructed dataset consisting of 4,813 security discussions and 12,464 non-security discussions. We found that all the models can effectively identify security discussions: an average precision of 84.86%, recall of 72.80%, F1-score of 77.89%, AUC of 83.75% and G-mean 82.77%. DeepM1, a deep learning model, performs the best, achieving above 84% in all metrics and significantly outperforms three baselines. Finally, the practitioners' feedback collected from a validation survey reveals that security discussions identified by DeepM1 have promising applications in practice.


翻译:我们声称,查明和利用分散在现有微观服务系统中的安保讨论可以部分弥合这一差距。我们将这些安保讨论定义为“发展者讨论的一段,其中包括与安全有关的设计决定、挑战或解决办法”。我们首先调查了67名从业人员,发现确保微观服务系统是一项独特的挑战,而且获得安全讨论对作出安全决定是有益的。调查还确认,可能的工具对自动确定此类安保讨论很有用。我们开发了15个机器/深层学习模型,自动确定安保讨论。我们将这些模型应用于一个手工制作的数据集,其中包括4 813次安全讨论和12 464次非安全讨论。我们发现,所有模型都能够有效地确定安保讨论:平均精确度为84.86%,回顾72.88%,F1核心为77.89%,ACU为83.75%,G-平均值为82.77%。深层M1是一个深层学习模型,在所有计量讨论中最优秀,达到84%以上,深层M1级讨论中大大超出三个基准。最后,我们发现,通过收集的实践验证,从深层M软件中得出了可靠的反馈。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年9月3日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月20日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员