In the text classification problem, the imbalance of labels in datasets affect the performance of the text-classification models. Practically, the data about user comments on social networking sites not altogether appeared - the administrators often only allow positive comments and hide negative comments. Thus, when collecting the data about user comments on the social network, the data is usually skewed about one label, which leads the dataset to become imbalanced and deteriorate the model's ability. The data augmentation techniques are applied to solve the imbalance problem between classes of the dataset, increasing the prediction model's accuracy. In this paper, we performed augmentation techniques on the VLSP2019 Hate Speech Detection on Vietnamese social texts and the UIT - VSFC: Vietnamese Students' Feedback Corpus for Sentiment Analysis. The result of augmentation increases by about 1.5% in the F1-macro score on both corpora.
翻译:在文本分类问题中,数据集标签的不平衡影响文本分类模型的性能。实际上,关于社交网站用户评论的数据并非完全出现,管理者往往只允许正面评论和隐藏负面评论。因此,在收集社交网络用户评论的数据时,数据通常偏向于一个标签,导致数据集变得不平衡,并使模型的能力恶化。数据增强技术用于解决数据集各类别之间的不平衡问题,提高预测模型的准确性。在本文中,我们在越南社会文本上的VLSP2019仇恨言语探测和越南学生感知分析的UIT-VSFC:越南学生反馈公司。两个子体的F1-macro分数增加约1.5%的结果。