Granger causality has been employed to investigate causality relations between components of stationary multiple time series. Here, we generalize this concept by developing statistical inference for local Granger causality for multivariate locally stationary processes. Thus, our proposed local Granger causality approach captures time-evolving causality relationships in nonstationary processes. The proposed local Granger causality is well represented in the frequency domain and estimated based on the parametric time-varying spectral density matrix using the local Whittle likelihood. Under regularity conditions, we demonstrate that the estimators converge weakly to a Gaussian process. Additionally, the test statistic for the local Granger causality is shown to be asymptotically distributed as a quadratic form of a multivariate normal distribution. The finite sample performance is confirmed with several simulation studies for multivariate time-varying VAR models. For practical demonstration, the proposed local Granger causality method uncovered new functional connectivity relationships between channels in brain signals. Moreover, the method was able to identify structural changes of Granger causality in financial data.
翻译:使用重力因果关系来调查固定多时序列各组成部分之间的因果关系。 在这里, 我们通过为多变本地固定过程开发本地引力因果关系的统计推断来推广这一概念。 因此, 我们提议的本地引力因果关系方法可以捕捉非静止过程的时间变化因果关系。 拟议的本地引力因果关系在频率域中得到了很好的体现, 并且根据使用本地惠特尔可能性的参数时间变化光谱密度矩阵估算。 在常规条件下, 我们证明估计者很容易聚集到高斯进程。 此外, 本地引力因果关系的测试统计显示, 作为多变性正常分布的二次分布。 有限的样本性能得到了多个多变性时间变化VAR模型模拟研究的确认。 关于实际示范, 拟议的本地引力因果关系方法发现了脑信号中各频道之间新的功能连接关系。 此外, 这种方法能够识别金融数据中重力因果关系的结构变化。