Selective Laser Melting (SLM) is a powder-bed additive manufacturing technique whose part quality depends critically on feedstock morphology. However, conventional powder characterization methods are low-throughput and qualitative, failing to capture the heterogeneity of industrial-scale batches. We present an automated, machine learning framework that couples high-throughput imaging with shape extraction and clustering to profile metallic powder morphology at scale. We develop and evaluate three clustering pipelines: an autoencoder pipeline, a shape-descriptor pipeline, and a functional-data pipeline. Across a dataset of approximately 126,000 powder images (0.5-102 micrometer diameter), internal validity metrics identify the Fourier-descriptor + k-means pipeline as the most effective, achieving the lowest Davies-Bouldin index and highest Calinski-Harabasz score while maintaining sub-millisecond runtime per particle on a standard desktop workstation. Although the present work focuses on establishing the morphological-clustering framework, the resulting shape groups form a basis for future studies examining their relationship to flowability, packing density, and SLM part quality. Overall, this unsupervised learning framework enables rapid, automated assessment of powder morphology and supports tracking of shape evolution across reuse cycles, offering a path toward real-time feedstock monitoring in SLM workflows.
翻译:选择性激光熔化(SLM)是一种粉末床增材制造技术,其零件质量关键取决于原料粉末的形态。然而,传统的粉末表征方法通量低且定性化,难以捕捉工业规模批次的异质性。我们提出了一种自动化机器学习框架,将高通量成像与形状提取及聚类相结合,实现对金属粉末形态的大规模表征。我们开发并评估了三种聚类流程:自编码器流程、形状描述符流程和函数型数据流程。在包含约126,000张粉末图像(直径0.5-102微米)的数据集上,内部有效性指标确定傅里叶描述符结合k均值聚类流程最为有效,其戴维森-堡丁指数最低、卡林斯基-哈拉巴斯分数最高,同时在标准桌面工作站上保持每颗粒亚毫秒级的运行时间。尽管当前工作侧重于建立形态聚类框架,但所得的形状组为未来研究其与流动性、堆积密度及SLM零件质量的关系奠定了基础。总体而言,该无监督学习框架实现了粉末形态的快速自动化评估,支持跨重复使用周期的形状演变追踪,为SLM工作流程中的实时原料监控提供了可行路径。