In this work, we extend the Spatiotemporal Tube (STT) framework to address Probabilistic Temporal Reach-Avoid-Stay (PrT-RAS) tasks in dynamic environments with uncertain obstacles. We develop a real-time tube synthesis procedure that explicitly accounts for time-varying uncertain obstacles and provides formal probabilistic safety guarantees. The STT is formulated as a time-varying ball in the state space whose center and radius evolve online based on uncertain sensory information. We derive a closed-form, approximation-free control law that confines the system trajectory within the tube, ensuring both probabilistic safety and task satisfaction. Our method offers a formal guarantee for probabilistic avoidance and finite-time task completion. The resulting controller is model-free, approximation-free, and optimization-free, enabling efficient real-time execution while guaranteeing convergence to the target. The effectiveness and scalability of the framework are demonstrated through simulation studies and hardware experiments on mobile robots, a UAV, and a 7-DOF manipulator navigating in cluttered and uncertain environments.
翻译:本研究扩展了时空管框架,以解决动态环境中存在不确定障碍物的概率时序可达-避障-驻留任务。我们开发了一种实时管合成方法,该方法显式地处理时变不确定障碍物,并提供形式化的概率安全保证。时空管被定义为状态空间中一个时变球体,其中心和半径根据不确定的传感信息在线演化。我们推导出了一种闭式、无近似的控制律,将系统轨迹限制在管内,同时确保概率安全性和任务满足性。该方法为概率避障和有限时间任务完成提供了形式化保证。所得控制器无需模型、无需近似、无需优化,能够在保证收敛至目标的同时实现高效的实时执行。通过移动机器人、无人机和七自由度机械臂在杂乱不确定环境中的导航仿真研究及硬件实验,验证了该框架的有效性和可扩展性。