Researchers and scientists increasingly rely on specialized information retrieval (IR) or recommendation systems (RS) to support them in their daily research tasks. Paper recommender systems are one such tool scientists use to stay on top of the ever-increasing number of academic publications in their field. Improving research paper recommender systems is an active research field. However, less research has focused on how the interfaces of research paper recommender systems can be tailored to suit the needs of different research domains. For example, in the field of biomedicine and chemistry, researchers are not only interested in textual relevance but may also want to discover or compare the contained chemical entity information found in a paper's full text. Existing recommender systems for academic literature do not support the discovery of this non-textual, but semantically valuable, chemical entity data. We present the first implementation of a specialized chemistry paper recommender system capable of visualizing the contained chemical structures, chemical formulae, and synonyms for chemical compounds within the document's full text. We review existing tools and related research in this field before describing the implementation of our ChemVis system. With the help of chemists, we are expanding the functionality of ChemVis, and will perform an evaluation of recommendation performance and usability in future work.
翻译:论文建议系统是科学家们用来在不断增加的本领域学术出版物中保持最高水平的工具之一。改进研究论文建议系统是一个积极的研究领域。然而,研究较少注重如何根据不同研究领域的需要调整研究论文建议系统之间的接口,以适应不同研究领域的需要。例如,在生物医学和化学领域,研究人员不仅对文字相关性感兴趣,而且还可能想要发现或比较文件全文中发现的化学实体的包含信息。现有的学术文献建议系统并不支持发现这种非文字性的,但语义上有价值的化学实体数据。我们介绍首次实施专门的化学论文建议系统,以便能够在文件全文中直观化学结构、化学配方和化学化合物同义。我们审查该领域的现有工具和相关研究,然后描述我们化学观察系统的执行情况。我们通过化学学家的帮助,正在扩大未来化学评估的功能。我们将在评估工作上扩大化学化学化学结构、化学配方和化学化合物的功能。