Many unsupervised representation learning methods belong to the class of similarity learning models. While various modality-specific approaches exist for different types of data, a core property of many methods is that representations of similar inputs are close under some similarity function. We propose EMDE (Efficient Manifold Density Estimator) - a framework utilizing arbitrary vector representations with the property of local similarity to succinctly represent smooth probability densities on Riemannian manifolds. Our approximate representation has the desirable properties of being fixed-size and having simple additive compositionality, thus being especially amenable to treatment with neural networks - both as input and output format, producing efficient conditional estimators. We generalize and reformulate the problem of multi-modal recommendations as conditional, weighted density estimation on manifolds. Our approach allows for trivial inclusion of multiple interaction types, modalities of data as well as interaction strengths for any recommendation setting. Applying EMDE to both top-k and session-based recommendation settings, we establish new state-of-the-art results on multiple open datasets in both uni-modal and multi-modal settings.
翻译:许多未经监督的代表学习方法属于类似学习模式的类别。虽然对不同类型的数据存在不同模式的具体方法,但许多方法的核心特性是,类似投入的表示在某些相似功能下很接近。我们提议使用任意的矢量表示法和本地相似特性的任意矢量表示法,简洁地代表了里曼尼方形上的顺畅概率密度。我们的大致代表法具有固定尺寸和简单添加性等可取的特性,因此特别适合通过神经网络处理,既作为投入格式,又作为产出格式,产生高效的有条件估测器。我们将多模式建议的问题作为有条件的加权密度估算法加以概括和重新表述。我们的方法允许将多种互动类型、数据模式以及任何建议设置的交互优势都微不足道地纳入其中。将EMDE适用于上层和会场的建议设置,我们在单式和多模式设置的多个开放数据集上建立了新的状态。