Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning. This task is very complex, as the behaviour of road agents depends on many factors and the number of possible future trajectories can be considerable (multi-modal). Most approaches proposed to address multi-modal motion prediction are based on complex machine learning systems that have limited interpretability. Moreover, the metrics used in current benchmarks do not evaluate all aspects of the problem, such as the diversity and admissibility of the output. In this work, we aim to advance towards the design of trustworthy motion prediction systems, based on some of the requirements for the design of Trustworthy Artificial Intelligence. We focus on evaluation criteria, robustness, and interpretability of outputs. First, we comprehensively analyse the evaluation metrics, identify the main gaps of current benchmarks, and propose a new holistic evaluation framework. In addition, we formulate a method for the assessment of spatial and temporal robustness by simulating noise in the perception system. We propose an intent prediction layer that can be attached to multi-modal motion prediction models to enhance the interpretability of the outputs and generate more balanced results in the proposed evaluation framework. Finally, the interpretability of the outputs is assessed by means of a survey that explores different elements in the visualization of the multi-modal trajectories and intentions.
翻译:预测其他道路代理人的运动,使其他道路代理人能够安全有效地进行道路规划。这项任务非常复杂,因为道路代理人的行为取决于许多因素,未来可能的轨迹数目可能很多(多式),为解决多式运动预测提出的大多数办法都是基于复杂的机器学习系统,这些系统的解释性有限。此外,目前基准中所使用的衡量标准并不评价问题的所有方面,例如产出的多样性和可接受性。在这项工作中,我们的目标是根据设计可信赖的人性情报的某些要求,设计可靠的运动预测系统。我们注重评价标准、稳健性和产出的可解释性。首先,我们全面分析评价指标,查明目前基准的主要差距,并提出新的综合评价框架。此外,我们制定一种方法,通过模拟感知系统噪音来评估空间和时间稳健性。我们提议一个意图预测层,可附属于多式运动预测模型,以加强产出的可解释性,并在拟议评价框架中产生更平衡的结果。我们全面分析评价指标,通过可视化的方法来评估多式产出的可视性。最后,通过分析方式评估多式产出的可视性。