Author stylized rewriting is the task of rewriting an input text in a particular author's style. Recent works in this area have leveraged Transformer-based language models in a denoising autoencoder setup to generate author stylized text without relying on a parallel corpus of data. However, these approaches are limited by the lack of explicit control of target attributes and being entirely data-driven. In this paper, we propose a Director-Generator framework to rewrite content in the target author's style, specifically focusing on certain target attributes. We show that our proposed framework works well even with a limited-sized target author corpus. Our experiments on corpora consisting of relatively small-sized text authored by three distinct authors show significant improvements upon existing works to rewrite input texts in target author's style. Our quantitative and qualitative analyses further show that our model has better meaning retention and results in more fluent generations.
翻译:作者的系统重写是用特定作者的风格重写输入文本的任务。 该领域最近的工作利用了以变换器为基础的语言模型, 使自动编码器在不依赖平行数据的情况下生成作者的系统化文本。 但是,这些方法因缺乏对目标属性的明确控制以及完全由数据驱动而受到限制。 在本文中, 我们提议了一个主任- 主任框架, 用于重写目标作者风格的内容, 特别侧重于某些目标属性 。 我们显示, 我们提议的框架即使在一个有限的目标作者群中也运作良好。 我们对由三位不同作者撰写的相对小的文本组成的公司实验显示, 以目标作者的风格重写输入文本的现有工作有了重大改进。 我们的定量和定性分析进一步表明, 我们的模式在更宽的几代人中, 更具有更好的意义和结果。