Scientific knowledge graphs have been proposed as a solution to structure the content of research publications in a machine-actionable way and enable more efficient, computer-assisted workflows for many research activities. Crowd-sourcing approaches are used frequently to build and maintain such scientific knowledge graphs. To contribute to scientific knowledge graphs, researchers need simple and easy-to-use solutions to generate new knowledge graph elements and establish the practice of semantic representations in scientific communication. In this paper, we present a workflow for authors of scientific documents to specify their contributions with a LaTeX package, called SciKGTeX, and upload them to a scientific knowledge graph. The SciKGTeX package allows authors of scientific publications to mark the main contributions of their work directly in LaTeX source files. The package embeds marked contributions as metadata into the generated PDF document, from where they can be extracted automatically and imported into a scientific knowledge graph, such as the ORKG. This workflow is simpler and faster than current approaches, which make use of external web interfaces for data entry. Our user evaluation shows that SciKGTeX is easy to use, with a score of 79 out of 100 on the System Usability Scale, as participants of the study needed only 7 minutes on average to annotate the main contributions on a sample abstract of a published paper. Further testing shows that the embedded contributions can be successfully uploaded to ORKG within ten seconds. SciKGTeX simplifies the process of manual semantic annotation of research contributions in scientific articles. Our workflow demonstrates how a scientific knowledge graph can automatically ingest research contributions from document metadata.


翻译:科学知识图谱被提出作为一种在机器可操作的方式中构建和组织研究出版物内容并为许多研究活动提供更高效的计算机辅助工作流的解决方案。众包方法经常用于构建和维护这样的科学知识图谱。为了为科学知识图谱做出贡献,研究人员需要简单易用的解决方案,以生成新的知识图谱元素并在科学交流中建立语义表示的实践。在本文中,我们提出了一个工作流,即通过LaTeX包SciKGTeX,让科学文档的作者指定他们的贡献,并将其上传到科学知识图谱。SciKGTeX包允许科学出版物的作者直接在LaTeX源文件中标记其主要贡献。该包将标记的贡献作为元数据嵌入到生成的PDF文档中,从中可以自动提取并导入到科学知识图谱中,如ORKG。这个工作流比当前使用外部Web界面进行数据输入的方法更简单、更快。我们的用户评估显示,SciKGTex易于使用,在系统可用性评估表上得分为79分(满分100分),参与者在样本论文的摘要上仅需7分钟标注主要贡献。进一步测试显示,嵌入的贡献可以在10秒内成功上传到ORKG。SciKGTex简化了对科学论文中研究贡献进行手动语义标注的过程。我们的工作流演示了一个科学知识图谱如何自动从文档元数据中摄取研究贡献。

0
下载
关闭预览

相关内容

【2022新书】Python数据科学导论,309页pdf
专知会员服务
82+阅读 · 2022年8月6日
【干货书】计算机科学,647页pdf,Computer Science
专知会员服务
46+阅读 · 2021年5月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
跨域推荐最新前沿工作进展汇总
机器学习与推荐算法
0+阅读 · 2022年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
在Python中使用SpaCy进行文本分类
专知
24+阅读 · 2018年5月8日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年8月16日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员