As a new generation of digital media for covert transmission, three-dimension (3D) mesh models are frequently used and distributed on the network. Facing the huge massive of network data, it is urgent to study a method to protect and store this large amounts of data. In this paper, we proposed a high capacity reversible data hiding in encrypted 3D mesh models. This method divides the vertices of all 3D mesh into "embedded sets" and "prediction sets" based on the parity of the index. In addition, the multiple most significant bit (Multi-MSB) prediction reserved space is used to adaptively embed secret message, and the auxiliary information is compressed by arithmetic coding to further free up redundant space of the 3D mesh models. We use the majority voting system(MSV) principle to restore the original mesh model with high quality. The experimental results show that our method achieves a higher embedding capacity compared with state-of-the-art RDH-ED methods on 3D mesh models and can restore the original 3D mesh models with high quality.


翻译:作为新一代的隐蔽传输数字介质,经常在网络上使用和传播三维网状模型。面对网络数据的巨大规模,迫切需要研究一种保护和存储大量数据的方法。在本文中,我们提议了一种高容量的可逆数据,隐藏在加密的 3D 网状模型中。这个方法将所有 3D 网状的顶部分隔为基于指数对等的“嵌入套件”和“定位套件 ” 。此外,多个最重要的部分( Multi- MSB) 预留空间被用于适应性嵌入秘密信息,辅助信息通过算术编码压缩,以进一步释放3D 网状模型的多余空间。我们使用多数人投票系统(MSV) 原则, 以高质量的方式恢复原始网状模型。 实验结果表明,我们的方法在 3D网状模型上实现了比最先进的RDH-ED方法更高的嵌入能力, 并且能够以高质量的方式恢复原始的 3D 网状网状模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
38+阅读 · 2020年11月24日
3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
已删除
将门创投
3+阅读 · 2017年10月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2017年10月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员