The amount of scholarly data has been increasing dramatically over the last years. For newcomers to a particular science domain (e.g., IR, physics, NLP) it is often difficult to spot larger trends and to position the latest research in the context of prior scientific achievements and breakthroughs. Similarly, researchers in the history of science are interested in tools that allow them to analyze and visualize changes in particular scientific domains. Temporal summarization and related methods should be then useful for making sense of large volumes of scientific discourse data aggregated over time. We demonstrate a novel approach to analyze the collections of research papers published over longer time periods to provide a high-level overview of important semantic changes that occurred over the progress of time. Our approach is based on comparing word semantic representations over time and aims to support users in a better understanding of large domain-focused archives of scholarly publications. As an example dataset we use the ACL Anthology Reference Corpus that spans from 1979 to 2015 and contains 22,878 scholarly articles.


翻译:过去几年来,学术数据的数量一直在急剧增加,对于进入特定科学领域(如IR、物理、NLP)的新人来说,往往难以发现较大的趋势,难以将最新研究置于以往科学成就和突破的背景下,同样,科学史上的研究人员对有助于他们分析和直观特定科学领域变化的工具感兴趣。时间总和和相关方法应当有助于了解长期积累的大量科学话语数据。我们展示了一种新颖的方法来分析长期出版的研究论文的汇编,以便高层次地概述随着时间的推移而出现的重要语义变化。我们的方法是比较长期的文字语义表达,目的是支持用户更好地了解大量以领域为重点的学术出版物档案。我们使用1979年至2015年的ACLA Anthology Conference Corporus(1979年至2015年)为一例,包含22,878份学术文章。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年10月9日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
49+阅读 · 2021年9月11日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年10月9日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员