Natural language (NL) documentation is the bridge between software managers and testers, and NL test cases are prevalent in system-level testing and other quality assurance activities. Due to reasons such as requirements redundancy, parallel testing, and tester turnover within long evolving history, there are inevitably lots of redundant test cases, which significantly increase the cost. Previous redundancy detection approaches typically treat the textual descriptions as a whole to compare their similarity and suffer from low precision. Our observation reveals that a test case can have explicit test-oriented entities, such as tested function Components, Constraints, etc; and there are also specific relations between these entities. This inspires us with a potential opportunity for accurate redundancy detection. In this paper, we first define five test-oriented entity categories and four associated relation categories and re-formulate the NL test case redundancy detection problem as the comparison of detailed testing content guided by the test-oriented entities and relations. Following that, we propose Tscope, a fine-grained approach for redundant NL test case detection by dissecting test cases into atomic test tuple(s) with the entities restricted by associated relations. To serve as the test case dissection, Tscope designs a context-aware model for the automatic entity and relation extraction. Evaluation on 3,467 test cases from ten projects shows Tscope could achieve 91.8% precision, 74.8% recall, and 82.4% F1, significantly outperforming state-of-the-art approaches and commonly-used classifiers. This new formulation of the NL test case redundant detection problem can motivate the follow-up studies to further improve this task and other related tasks involving NL descriptions.


翻译:自然语言文件(NL)是软件管理员和测试者之间的桥梁,而NL测试案例在系统一级测试和其他质量保证活动中很普遍。由于需求冗余、平行测试和测试者在长期演变的历史中更替等原因,不可避免地有大量冗余测试案例,这些案例大大增加了成本。以前的冗余检测方法通常将文字描述作为一个整体,以比较其相似性和低精确度。我们的观察显示,测试案例可以有明确的测试导向实体,如测试的功能组成部分、制约等;这些实体之间也有着具体的关系。这激励我们有可能发现准确的冗余探测。在本文件中,我们首先界定了五个面向测试的实体类别和四个相关的关联关系类别,并重新配置NL测试测试案例的冗余检测问题,作为测试内容的详细比较,然后我们提出“范围”:通过将测试的测试案例分解成原子测试的测试案例,可以进一步改进与受相关关系限制的实体的原子测试后继任务。为了作为测试案例的分解剖,将NL测试样本的常规测试类型 4,Teroproal 10个测试案例的缩缩缩缩 。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员