Current data-driven Wi-Fi-based indoor localization systems face three critical challenges: protecting user privacy, achieving accurate predictions in dynamic multipath environments, and generalizing across different deployments. Traditional Wi-Fi localization systems often compromise user privacy, particularly when facing compromised access points (APs) or man-in-the-middle attacks. As IoT devices proliferate in indoor environments, developing solutions that deliver accurate localization while robustly protecting privacy has become imperative. We introduce FedWiLoc, a privacy-preserving indoor localization system that addresses these challenges through three key innovations. First, FedWiLoc employs a split architecture where APs process Channel State Information (CSI) locally and transmit only privacy-preserving embedding vectors to user devices, preventing raw CSI exposure. Second, during training, FedWiLoc uses federated learning to collaboratively train the model across APs without centralizing sensitive user data. Third, we introduce a geometric loss function that jointly optimizes angle-of-arrival predictions and location estimates, enforcing geometric consistency to improve accuracy in challenging multipath conditions. Extensive evaluation across six diverse indoor environments spanning over 2,000 sq. ft. demonstrates that FedWiLoc outperforms state-of-the-art methods by up to 61.9% in median localization error while maintaining strong privacy guarantees throughout both training and inference.
翻译:当前基于数据驱动的Wi-Fi室内定位系统面临三个关键挑战:保护用户隐私、在动态多径环境中实现精确预测,以及在不同部署场景中保持泛化能力。传统Wi-Fi定位系统常常牺牲用户隐私,尤其在面对受攻击的接入点或中间人攻击时。随着物联网设备在室内环境中的激增,开发既能提供精确定位又能稳健保护隐私的解决方案变得至关重要。我们提出了FedWiLoc,一种隐私保护的室内定位系统,通过三项关键创新应对这些挑战。首先,FedWiLoc采用分割架构,接入点在本地处理信道状态信息,仅向用户设备传输隐私保护的嵌入向量,防止原始CSI暴露。其次,在训练过程中,FedWiLoc利用联邦学习在多个接入点间协同训练模型,而无需集中敏感用户数据。第三,我们引入了一种几何损失函数,联合优化到达角预测和位置估计,通过强制几何一致性提升在复杂多径条件下的定位精度。在覆盖超过2000平方英尺的六种不同室内环境中进行的广泛评估表明,FedWiLoc在中值定位误差上优于现有最优方法达61.9%,同时在训练和推理全过程中保持强大的隐私保障。