Probabilistic solvers for ordinary differential equations assign a posterior measure to the solution of an initial value problem. The joint covariance of this distribution provides an estimate of the (global) approximation error. The contraction rate of this error estimate as a function of the solver's step size identifies it as a well-calibrated worst-case error, but its explicit numerical value for a certain step size is not automatically a good estimate of the explicit error. Addressing this issue, we introduce, discuss, and assess several probabilistically motivated ways to calibrate the uncertainty estimate. Numerical experiments demonstrate that these calibration methods interact efficiently with adaptive step-size selection, resulting in descriptive, and efficiently computable posteriors. We demonstrate the efficiency of the methodology by benchmarking against the classic, widely used Dormand-Prince 4/5 Runge-Kutta method.
翻译:普通差分方程的概率求解器为最初值问题的解决指定了后继测量。 此分布的共变量提供了对( 全球) 近似误差的估计。 此误差估计的收缩率作为求解器步数大小的函数, 将它确定为经适当校准的最坏情况错误, 但对于某一步数大小, 其明确的数值并不是对明显错误的自然估计。 解决这个问题, 我们介绍、 讨论并评估了几种以概率为动机的校准不确定性估计方法。 数值实验表明, 这些校准方法与适应性的步数选择有效互动, 导致描述性、 高效的可比较后继子体。 我们用传统、 广泛使用的多曼德- 太子港 4/5 Runge- Kutta 方法基准来证明方法的效率 。