Ultrasound Strain Elastography (USE) is a powerful non-invasive imaging technique for assessing tissue mechanical properties, offering crucial diagnostic value across diverse clinical applications. However, its clinical application remains limited by tissue decorrelation noise, scarcity of ground truth, and inconsistent strain estimation under different deformation conditions. Overcoming these barriers, we propose MUSSE-Net, a residual-aware, multi-stage unsupervised sequential deep learning framework designed for robust and consistent strain estimation. At its backbone lies our proposed USSE-Net, an end-to-end multi-stream encoder-decoder architecture that parallelly processes pre- and post-deformation RF sequences to estimate displacement fields and axial strains. The novel architecture incorporates Context-Aware Complementary Feature Fusion (CACFF)-based encoder with Tri-Cross Attention (TCA) bottleneck with a Cross-Attentive Fusion (CAF)-based sequential decoder. To ensure temporal coherence and strain stability across varying deformation levels, this architecture leverages a tailored consistency loss. Finally, with the MUSSE-Net framework, a secondary residual refinement stage further enhances accuracy and suppresses noise. Extensive validation on simulation, in vivo, and private clinical datasets from Bangladesh University of Engineering and Technology (BUET) medical center, demonstrates MUSSE-Net's outperformed existing unsupervised approaches. On MUSSE-Net achieves state-of-the-art performance with a target SNR of 24.54, background SNR of 132.76, CNR of 59.81, and elastographic SNR of 9.73 on simulation data. In particular, on the BUET dataset, MUSSE-Net produces strain maps with enhanced lesion-to-background contrast and significant noise suppression yielding clinically interpretable strain patterns.
翻译:超声应变弹性成像(USE)是一种强大的非侵入性成像技术,用于评估组织力学特性,在多种临床应用中具有关键诊断价值。然而,其临床应用仍受限于组织去相关噪声、真实数据稀缺以及不同形变条件下应变估计的不一致性。为克服这些障碍,我们提出了MUSSE-Net,一种残差感知的多阶段无监督序列深度学习框架,旨在实现稳健且一致的应变估计。其核心是我们提出的USSE-Net,一种端到端的多流编码器-解码器架构,并行处理形变前后的射频序列以估计位移场和轴向应变。该新颖架构结合了基于上下文感知互补特征融合(CACFF)的编码器与三交叉注意力(TCA)瓶颈层,以及基于交叉注意力融合(CAF)的序列解码器。为确保不同形变水平下的时间相干性和应变稳定性,该架构采用了定制的 consistency loss。最后,通过MUSSE-Net框架,二级残差细化阶段进一步提升了准确性并抑制了噪声。在模拟数据、体内数据以及来自孟加拉国工程技术大学(BUET)医疗中心的私有临床数据集上的广泛验证表明,MUSSE-Net超越了现有无监督方法。在模拟数据上,MUSSE-Net实现了目标信噪比24.54、背景信噪比132.76、对比度噪声比59.81和弹性成像信噪比9.73的先进性能。特别是在BUET数据集上,MUSSE-Net生成的应变图具有增强的病灶-背景对比度和显著的噪声抑制,产生了临床可解释的应变模式。