OBJECTIVE: Our objective is to evaluate the possibility of using cough audio recordings (spontaneous or simulated) to detect sound patterns in people who are diagnosed with COVID-19. The research question that led our work was: what is the sensitivity and specificity of a machine learning based COVID-19 cough classifier, using RT-PCR tests as gold standard? SETTING: The audio samples that were collected for this study belong to individuals who were swabbed in the City of Buenos Aires in 20 public and 1 private facilities where RT-PCR studies were carried out on patients suspected of COVID, and 14 out-of-hospital isolation units for patients with confirmed COVID mild cases. The audios were collected through the Buenos Aires city government WhatsApp chatbot that was specifically designed to address citizen inquiries related to the coronavirus pandemic (COVID-19). PARTICIPANTS: The data collected corresponds to 2821 individuals who were swabbed in the City of Buenos Aires, between August 11 and December 2, 2020. Individuals were divided into 1409 that tested positive for COVID-19 and 1412 that tested negative. From this sample group, 52.6% of the individuals were female and 47.4% were male. 2.5% were between the age of 0 and 20 , 61.1% between the age of 21 and 40 , 30.3% between the age of 41 and 60 and 6.1% were over 61 years of age. RESULTS: Using the dataset of 2821 individuals our results showed that the neural network classifier was able to discriminate between the COVID-19 positive and the healthy coughs with an accuracy of 86%. This accuracy obtained during the training process was later tested and confirmed with a second dataset corresponding to 492 individuals.


翻译:目标:我们的目标是评估是否有可能使用咳嗽录音(自发或模拟),以检测被确诊为COVID-19的人的听觉模式。导致我们工作的研究问题是:一个机器学习基于COVID-19咳嗽分类器的敏感度和特殊性,以RT-PCR测试为金本标准?设置:为本研究收集的音频样本属于在布宜诺斯艾利斯市20个公共和1个私人设施中被抽取的个人,这些设施对怀疑患有COVID的病人进行了RT-PCR研究,对确诊为COVID年龄的病人进行了14个医院外隔离单元。导致我们工作的研究的问题是:一个机器学习基于COVID-19咳咳嗽分类器的COVID-19分类器的敏感度和特性如何?为本研究收集的音频是布宜诺斯艾利斯市政府专门设计用来回答与 Corona病毒流行(COVID-19)有关的公民问询的(COVID-19)。 第二阶段,收集的数据是2821个人被抽取的2821个人,在2020年8月11日至12日之间。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
40+阅读 · 2020年9月6日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
40+阅读 · 2020年9月6日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员