Machine learning has the potential to aid in mitigating the human effects of climate change. Previous applications of machine learning to tackle the human effects in climate change include approaches like informing individuals of their carbon footprint and strategies to reduce it. For these methods to be the most effective they must consider relevant social-psychological factors for each individual. Of social-psychological factors at play in climate change, affect has been previously identified as a key element in perceptions and willingness to engage in mitigative behaviours. In this work, we propose an investigation into how affect could be incorporated to enhance machine learning based interventions for climate change. We propose using affective agent-based modelling for climate change as well as the use of a simulated climate change social dilemma to explore the potential benefits of affective machine learning interventions. Behavioural and informational interventions can be a powerful tool in helping humans adopt mitigative behaviours. We expect that utilizing affective ML can make interventions an even more powerful tool and help mitigative behaviours become widely adopted.


翻译:机器学习的潜力在于帮助减轻气候变化对人类的影响。以前,机器学习用于应对气候变化对人类的影响的应用包括一些方法,例如让个人了解其碳足迹和减少碳足迹的战略。为使这些方法最为有效,他们必须考虑每个人相关的社会心理因素。在气候变化中,影响社会心理因素以前被确定为认识和愿意参与减轻行为的一个关键因素。在这项工作中,我们提议研究如何将影响纳入进来,以加强基于机器的气候变化干预。我们提议使用基于情感的代理人模拟气候变化模式,以及模拟气候变化社会困境,以探索情感机器学习干预的潜在好处。行为和信息干预可以成为帮助人类采取减轻行为的有力工具。我们期望,利用影响ML可以使干预成为更强有力的工具,帮助减轻行为被广泛采用。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员