Classical results of Bennett and Gill (1981) show that with probability 1, $P^A \neq NP^A$ relative to a random oracle $A$, and with probability 1, $P^π\neq NP^π\cap coNP^π$ relative to a random permutation $π$. Whether $P^A = NP^A \cap coNP^A$ holds relative to a random oracle $A$ remains open. While the random oracle separation has been extended to specific individually random oracles--such as Martin-Löf random or resource-bounded random oracles--no analogous result is known for individually random permutations. We introduce a new resource-bounded measure framework for analyzing individually random permutations. We define permutation martingales and permutation betting games that characterize measure-zero sets in the space of permutations, enabling formal definitions of resource-bounded random permutations. Our main result shows that $P^π\neq NP^π\cap coNP^π$ for every polynomial-time betting-game random permutation $π$. This is the first separation result relative to individually random permutations, rather than an almost-everywhere separation. We also strengthen a quantum separation of Bennett, Bernstein, Brassard, and Vazirani (1997) by showing that $NP^π\cap coNP^π\not\subseteq BQP^π$ for every polynomial-space random permutation $π$. We investigate the relationship between random permutations and random oracles. We prove that random oracles are polynomial-time reducible from random permutations. The converse--whether every random permutation is reducible from a random oracle--remains open. We show that if $NP \cap coNP$ is not a measurable subset of $EXP$, then $P^A \neq NP^A \cap coNP^A$ holds with probability 1 relative to a random oracle $A$. Conversely, establishing this random oracle separation with time-bounded measure would imply $BPP$ is a measure 0 subset of $EXP$.
翻译:Bennett与Gill(1981)的经典结果表明:相对于随机谕示A,以概率1成立P^A ≠ NP^A;相对于随机置换π,以概率1成立P^π ≠ NP^π ∩ coNP^π。然而,相对于随机谕示A是否成立P^A = NP^A ∩ coNP^A仍为开放问题。虽然随机谕示分离结果已推广至特定个体随机谕示(如Martin-Löf随机谕示或资源有界随机谕示),但针对个体随机置换的类似结果尚未知。本文提出一种新的资源有界测度框架用于分析个体随机置换。我们定义了置换鞅与置换投注博弈,以刻画置换空间中测度为零的集合,从而形式化定义资源有界随机置换。主要结果表明:对于每个多项式时间投注博弈随机置换π,均成立P^π ≠ NP^π ∩ coNP^π。这是首个针对个体随机置换(而非几乎处处分离)的分离结果。我们还强化了Bennett、Bernstein、Brassard与Vazirani(1997)的量子分离结果,证明对于每个多项式空间随机置换π,成立NP^π ∩ coNP^π ⊈ BQP^π。我们探究了随机置换与随机谕示的关系,证明随机谕示可通过多项式时间归约从随机置换导出。其逆命题——是否每个随机置换均可从随机谕示归约而来——仍为开放问题。我们证明:若NP ∩ coNP不是EXP的可测子集,则相对于随机谕示A以概率1成立P^A ≠ NP^A ∩ coNP^A。反之,若能在时间有界测度下建立该随机谕示分离,则可推出BPP是EXP中测度为零的子集。