The human resource (HR) domain contains various types of privacy-sensitive textual data, such as e-mail correspondence and performance appraisal. Doing research on these documents brings several challenges, one of them anonymisation. In this paper, we evaluate the current Dutch text de-identification methods for the HR domain in four steps. First, by updating one of these methods with the latest named entity recognition (NER) models. The result is that the NER model based on the CoNLL 2002 corpus in combination with the BERTje transformer give the best combination for suppressing persons (recall 0.94) and locations (recall 0.82). For suppressing gender, DEDUCE is performing best (recall 0.53). Second NER evaluation is based on both strict de-identification of entities (a person must be suppressed as a person) and third evaluation on a loose sense of de-identification (no matter what how a person is suppressed, as long it is suppressed). In the fourth and last step a new kind of NER dataset is tested for recognising job titles in texts.
翻译:人力资源领域包含各种对隐私敏感的文本数据,如电子邮件通信和考绩等。对这些文件的研究带来了若干挑战,其中之一是匿名。在本文件中,我们分四个步骤评估目前荷兰文本对人力资源领域的识别方法。首先,用最新的实体识别模式更新了其中一种方法。其结果是,基于CONLL 2002 Pasion 的NER模型与BERTje变压器相结合,为压制人员提供了最好的组合(重呼叫0.94)和地点(重呼叫0.82)。为了制止性别,DEDUCE正在最佳地(重呼叫0.53)进行第二次净化评估,其依据是严格地对实体的识别(一个人必须被作为个人加以抑制),以及基于宽松的识别意识进行第三次评估(无论一个人如何被压制,只要它被压制了)。第四和最后一步是测试一种新的净化数据集,以在文本中确认职称。