While autoregressive Large Vision-Language Models (VLMs) have achieved remarkable success, their sequential generation often limits their efficacy in complex visual planning and dynamic robotic control. In this work, we investigate the potential of constructing Vision-Language Models upon diffusion-based large language models (dLLMs) to overcome these limitations. We introduce Dream-VL, an open diffusion-based VLM (dVLM) that achieves state-of-the-art performance among previous dVLMs. Dream-VL is comparable to top-tier AR-based VLMs trained on open data on various benchmarks but exhibits superior potential when applied to visual planning tasks. Building upon Dream-VL, we introduce Dream-VLA, a dLLM-based Vision-Language-Action model (dVLA) developed through continuous pre-training on open robotic datasets. We demonstrate that the natively bidirectional nature of this diffusion backbone serves as a superior foundation for VLA tasks, inherently suited for action chunking and parallel generation, leading to significantly faster convergence in downstream fine-tuning. Dream-VLA achieves top-tier performance of 97.2% average success rate on LIBERO, 71.4% overall average on SimplerEnv-Bridge, and 60.5% overall average on SimplerEnv-Fractal, surpassing leading models such as $π_0$ and GR00T-N1. We also validate that dVLMs surpass AR baselines on downstream tasks across different training objectives. We release both Dream-VL and Dream-VLA to facilitate further research in the community.
翻译:尽管自回归大型视觉-语言模型(VLMs)已取得显著成功,但其序列生成特性常限制其在复杂视觉规划与动态机器人控制中的效能。本研究探讨了基于扩散式大语言模型(dLLMs)构建视觉-语言模型以克服这些局限的潜力。我们提出了Dream-VL——一种基于扩散的开放视觉-语言模型(dVLM),其在现有dVLM中实现了最先进的性能。Dream-VL在多项基准测试中与基于开放数据训练的一流自回归视觉-语言模型表现相当,但在应用于视觉规划任务时展现出更优的潜力。基于Dream-VL,我们进一步提出Dream-VLA——通过持续预训练开放机器人数据集开发的基于dLLM的视觉-语言-动作模型(dVLA)。我们证明该扩散骨干天然具备的双向特性为视觉-语言-动作任务提供了更优的基础架构,其本质上适用于动作分块与并行生成,从而在下游微调中实现显著更快的收敛速度。Dream-VLA在LIBERO基准上达到97.2%的平均成功率,在SimplerEnv-Bridge上取得71.4%的综合平均分,在SimplerEnv-Fractal上获得60.5%的综合平均分,超越了包括$π_0$与GR00T-N1在内的领先模型。我们还验证了在不同训练目标下,dVLM在下游任务中均优于自回归基线模型。我们同时开源Dream-VL与Dream-VLA以促进学界进一步研究。