While hyperparameter optimization (HPO) is known to greatly impact learning algorithm performance, it is often treated as an empirical afterthought. Recent empirical works have highlighted the risk of this second-rate treatment of HPO. They show that inconsistent performance results, based on choice of hyperparameter subspace to search, are a widespread problem in ML research. When comparing two algorithms, J and K searching one subspace can yield the conclusion that J outperforms K, whereas searching another can entail the opposite result. In short, your choice of hyperparameters can deceive you. We provide a theoretical complement to this prior work: We analytically characterize this problem, which we term hyperparameter deception, and show that grid search is inherently deceptive. We prove a defense with guarantees against deception, and demonstrate a defense in practice.


翻译:虽然已知超参数优化(HPO)会极大地影响学习算法的性能,但通常被视为事后经验。最近的实证工作突显了这种二流处理HPO的风险。它们表明基于选择超参数子空间进行搜索的不一致的性能结果是ML研究的一个普遍问题。在比较两个算法时,J和K搜索一个子空间可以得出J优于K的结论,而搜索另一个小空间则会产生相反的结果。简言之,你选择超参数可以欺骗你。我们为先前的这项工作提供了理论补充:我们用分析来定性这一问题,我们称之为超参数欺骗,并表明电网搜索本质上是欺骗性的。我们证明有防范欺骗的保证,并在实践中证明有防御。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
17+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
1+阅读 · 2021年3月31日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
26+阅读 · 2019年3月5日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
17+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Arxiv
1+阅读 · 2021年3月31日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
26+阅读 · 2019年3月5日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员