In 2019, the UK's Immigration and Asylum Chamber of the Upper Tribunal dismissed an asylum appeal basing the decision on the output of a biometric system, alongside other discrepancies. The fingerprints of the asylum seeker were found in a biometric database which contradicted the appellant's account. The Tribunal found this evidence unequivocal and denied the asylum claim. Nowadays, the proliferation of biometric systems is shaping public debates around its political, social and ethical implications. Yet whilst concerns towards the racialised use of this technology for migration control have been on the rise, investment in the biometrics industry and innovation is increasing considerably. Moreover, fairness has also been recently adopted by biometrics to mitigate bias and discrimination on biometrics. However, algorithmic fairness cannot distribute justice in scenarios which are broken or intended purpose is to discriminate, such as biometrics deployed at the border. In this paper, we offer a critical reading of recent debates about biometric fairness and show its limitations drawing on research in fairness in machine learning and critical border studies. Building on previous fairness demonstrations, we prove that biometric fairness criteria are mathematically mutually exclusive. Then, the paper moves on illustrating empirically that a fair biometric system is not possible by reproducing experiments from previous works. Finally, we discuss the politics of fairness in biometrics by situating the debate at the border. We claim that bias and error rates have different impact on citizens and asylum seekers. Fairness has overshadowed the elephant in the room of biometrics, focusing on the demographic biases and ethical discourses of algorithms rather than examine how these systems reproduce historical and political injustices.


翻译:2019年,英国上法庭移民和庇护分庭驳回了一项基于生物鉴别系统产出的决定以及其他差异的庇护上诉。寻求庇护者的指纹是在一个与上诉人的陈述相反的生物鉴别数据库中找到的。法庭认为这一证据是明确无误的,否定了庇护要求。现在,生物鉴别系统的扩散正在影响公众围绕其政治、社会和伦理影响的辩论。虽然人们对这种技术在移民控制方面被种族化地使用的关切在上升,但对生物鉴别技术产业和创新的投资也在大量增加。此外,最近生物鉴别技术也采用了公平性,以减轻生物鉴别技术的偏向和歧视。然而,在破坏或意图目的不同的情景中,如在边境部署的生物鉴别技术时,算法公正性无法分配正义性。在本文件中,我们批判地阅读了最近关于生物鉴别公平性的辩论,并展示了在机器学习和批判性边境研究中的公平性研究的局限性。在以往的公平性示范的基础上,我们证明生物鉴别性公平性公平性标准是相互排斥的。随后,文件又从经验的角度来说明,公平的生物鉴别系统不可能通过重新确定历史鉴别性原则的准确性,而使公民在以往的种族鉴别性上更难分辨测。最后,我们讨论的是,我们从历史鉴别性理论论论论论论论论论论论论论论的理论,我们从历史推论的理论的理论的理论的理论的理论的正确性研究。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关VIP内容
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员