Stroke is known as a major global health problem, and for stroke survivors it is key to monitor the recovery levels. However, traditional stroke rehabilitation assessment methods (such as the popular clinical assessment) can be subjective and expensive, and it is also less convenient for patients to visit clinics in a high frequency. To address this issue, in this work based on wearable sensing and machine learning techniques, we developed an automated system that can predict the assessment score in an objective manner. With wrist-worn sensors, accelerometer data was collected from 59 stroke survivors in free-living environments for a duration of 8 weeks, and we aim to map the week-wise accelerometer data (3 days per week) to the assessment score by developing signal processing and predictive model pipeline. To achieve this, we proposed two types of new features, which can encode the rehabilitation information from both paralysed/non-paralysed sides while suppressing the high-level noises such as irrelevant daily activities. Based on the proposed features, we further developed the longitudinal mixed-effects model with Gaussian process prior (LMGP), which can model the random effects caused by different subjects and time slots (during the 8 weeks). Comprehensive experiments were conducted to evaluate our system on both acute and chronic patients, and the results suggested its effectiveness.


翻译:然而,传统的中风康复评估方法(如流行临床评估)可能是主观和昂贵的,而且病人也不太方便以高频率到诊所看病。为了解决这个问题,我们在基于可磨损的遥感和机器学习技术的这项工作中开发了一个自动化系统,可以客观地预测评估得分。用手腕式传感器,从59个中风幸存者免费生活环境中收集了8周的加速计数据,我们的目标是通过开发信号处理和预测模式管道,将每周的加速计数据(每星期3天)映射到评估得分上。为了实现这一目标,我们提出了两类新特征,这些特征可以将来自瘫痪/不连续两侧的康复信息编码起来,同时抑制诸如无关的日常活动等高层次的噪音。根据拟议特征,我们进一步开发了高斯进程之前的长度混合效应模型(LMGP),该模型可以模拟由不同主题和不同时间段导致的随机效应,并且建议对病人进行的时间段8进行长期效果评估。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
1+阅读 · 2021年7月8日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员