Quality education, one of the seventeen sustainable development goals (SDGs) identified by the United Nations General Assembly, stands to benefit enormously from the adoption of artificial intelligence (AI) driven tools and technologies. The concurrent boom of necessary infrastructure, digitized data and general social awareness has propelled massive research and development efforts in the artificial intelligence for education (AIEd) sector. In this review article, we investigate how artificial intelligence, machine learning and deep learning methods are being utilized to support students, educators and administrative staff. We do this through the lens of a novel categorization approach. We consider the involvement of AI-driven methods in the education process in its entirety - from students admissions, course scheduling etc. in the proactive planning phase to knowledge delivery, performance assessment etc. in the reactive execution phase. We outline and analyze the major research directions under proactive and reactive engagement of AI in education using a representative group of 194 original research articles published in the past two decades i.e., 2003 - 2022. We discuss the paradigm shifts in the solution approaches proposed, i.e., in the choice of data and algorithms used over this time. We further dive into how the COVID-19 pandemic challenged and reshaped the education landscape at the fag end of this time period. Finally, we pinpoint existing limitations in adopting artificial intelligence for education and reflect on the path forward.
翻译:优质教育是联合国大会确定的十七项可持续发展目标之一,它从采用人工智能驱动的工具和技术中受益匪浅。与此同时,必要的基础设施、数字化数据和一般社会意识的蓬勃发展,推动了人为教育智能部门的大规模研发工作。在本审查文章中,我们调查如何利用人工智能、机器学习和深层次学习方法来支持学生、教育工作者和行政人员。我们从新的分类方法的角度来这样做。我们考虑采用人工智能驱动的方法,从学生入学、课程时间安排等全面参与教育过程。我们考虑在预防性规划阶段,从学生入学、课程安排等,到知识提供、业绩评估等,在被动执行阶段,同时推动必要的基础设施、数字化数据和一般社会意识的蓬勃发展,推动了在人工智能主动和被动参与教育过程中开展大规模研发工作。我们利用过去二十年(即2003-2022年)发表的194篇原始研究文章的代表小组,概述如何利用人工智能方法支持学生、机器学习和深层次学习。我们讨论了拟议解决方案方法的范式转变,即选择这一时期使用的数据和算法。我们进一步深入思考了目前用于最终教育的CVI-19时代,我们最终如何改变了目前对GIA-IS教育的时代的挑战。