Recent advances in reprogrammable hardware (e.g., FPGAs) and memory technology (e.g., DDR4, HBM) promise to solve performance problems inherent to graph processing like irregular memory access patterns on traditional hardware (e.g., CPU). While several of these graph accelerators were proposed in recent years, it remains difficult to assess their performance and compare them on common graph workloads and accelerator platforms, due to few open source implementations and excessive implementation effort. In this work, we build on a simulation environment for graph processing accelerators, to make several existing accelerator approaches comparable. This allows us to study relevant performance dimensions such as partitioning schemes and memory technology, among others. The evaluation yields insights into the strengths and weaknesses of current graph processing accelerators along these dimensions, and features a novel in-depth comparison.


翻译:在可重新规划硬件(如FPGAs)和记忆技术(如DDR4、HBM)方面,最近的进展有望解决像传统硬件(如CPU)不规则的内存访问模式等图形处理过程所固有的性能问题,尽管近年来提出了其中若干个图形加速器,但由于开放源码执行和过度执行,仍然难以评估其性能并在通用图表工作量和加速器平台上进行比较。在这项工作中,我们利用了图形处理加速器的模拟环境,使现有的几种加速器方法具有可比性。这使我们能够研究相关的性能层面,例如分割计划和记忆技术等。评价有助于了解这些层面当前图形处理加速器的长处和短处,并具有新的深入比较。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员